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1 Vaccination dynamics in well-mixed populations

Concerning imperfect vaccination, whose effectiveness is denoted by ε, the ordinary differential

equations for the SIR-V model are as follows.

dS

dt
= −βSI, (1)

dI

dt
= βSI + (1− ε)βV I − γI, (2)

dV

dt
= −(1− ε)βV I, (3)

dR

dt
= γI. (4)
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Here S, I, R, and V stands for the fraction of susceptible, infected, recovered, and vaccinated

individuals in the population. β is the disease transmission rate, and γ is the recovery rate. And

R0 = β/γ. The initial condition is

S(0) = 1− x, (5)

V (0) = x, (6)

I(0) = 0+, (7)

R(0) = 0, (8)

where x stands for the population vaccination level. A routine calculation gives the implicit

solutions with respect to R(t):

S(t) = (1− x)e−R0R(t), (9)

V (t) = xe(1−ε)R0R(t). (10)

Given that the identity S(t) + V (t) + I(t) +R(t) = 1 always holds, for t→∞ we obtain

(1− x)e−R0R(∞) + xe(1−ε)R0R(∞) +R(∞) = 1. (11)

A simple manipulation leads to the expression of x as a function of R(∞)

x =
R(∞) + exp[−R0R(∞)]− 1

exp[−R0R(∞)]− exp[−(1− ε)R0R(∞)]
. (12)

Now we treat the vaccination dynamics as a two-stage game, that is, vaccination decisions

(vaccination vs. nonvaccination) followed by disease outbreaks that determine the health out-

comes of each individual. It follows that the infection risk for an unvaccinated individual, ω0, and

that for an vaccinated individual, ω1, are just

ω0 = 1− S(∞)

S(0)
= 1− exp[−R0R(∞)], (13)

ω1 = 1− V (∞)

V (0)
= 1− exp[−(1− ε)R0R(∞)], (14)

respectively. Let c be the relative cost of vaccination to infection. Up to a positive constant

factor, the expected payoff for an unvaccinated individual and that for an vaccinated individual
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are therefore

f0 = −ω0, (15)

f1 = −c(1− ω1)− (1 + c)ω1, (16)

separately.

We first approach the vaccination game by considering the evolutionarily stable strategy

(ESS). Consequently the two strategies, vaccination vs. nonvaccination, share the same pay-

off at ESS. As the equilibrium vaccination level x∗ may be seen as the probability of getting

vaccinated, we immediately derive a parametric relation between c and x∗.

c = exp[−(1− ε)R0R(∞)]− exp[−R0R(∞)], (17)

x∗ =
R(∞) + exp[−R0R(∞)]− 1

exp[−R0R(∞)]− exp[−(1− ε)R0R(∞)]
. (18)

When c = 0 (vaccination incurs no cost), x∗ coincides with the social optimum of vaccination

coverage R0−1
εR0

. When ε = 1 (the vaccine is perfect), we can solve the ESS in explicit form

x∗ = 1 + ln(1−c)
cR0

.

On the other hand, we can apply the replicator dynamics to analyze the problem. Owing to

the fact that the final epidemic size R(∞) is implicitly dependent on the population vaccination

level x, both f0 and f1 can be treated as functions of x. Denote the payoff difference by F (x) =

f1(x) − f0(x). The social imitation dynamics of vaccination behavior is therefore described by

the replicator equation
dx

dt
= x(1− x)F (x), (19)

governing the time evolution of the fraction of vaccinated individuals, x, over epidemic seasons.

Solving the fixed points of F (x) = 0 yields the possible interior equilibrium x∗ and the same

implicit equations which describe the dependence of x∗ on c and ε through R(∞) as given

above Eqs. (17) and (18). There can exist multiple interior equilibria of vaccination level x∗

under certain parameter combinations of c and ε.

1.1 Proof: nonzero R(∞) is decreasing with the vaccination coverage x > 0

We proceed to prove that the nonzero final epidemic sizeR(∞) > 0 is monotonically decreasing

with the vaccination level x > 0. That is, dR(∞)
dx < 0. For notational simplicity, let r = R(∞). We
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rewrite (12) as

r = x[1− e−(1−ε)R0r] + (1− x)(1− e−R0r). (20)

Further define

p1(r) = 1− e−(1−ε)R0r, (21)

p2(r) = 1− e−R0r, (22)

φ(r) = xp1(r) + (1− x)p2(r). (23)
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Figure S1: Illustrative plot of the fixed point problem.

It is easy to show that both p1 and p2 are increasing functions of r and that p1 < p2 when

r ∈ (0, 1). Then Eq. (20) becomes a fixed point problem (Fig. S1)

r = φ(r). (24)

Define ϕ(r) = φ(r)− r. Take the derivative of ϕ(r):

ϕ
′
(r) = x(1− ε)R0e

−(1−ε)R0r + (1− x)R0e
−R0r − 1, (25)
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which is apparently a decreasing function of r. In particular,

ϕ
′
max = ϕ

′
(0) = (1− εx)R0 − 1 > 0, (26)

ϕ
′
min = ϕ

′
(1) < x+ (1− x)− 1 < 0. (27)

The first inequality is guaranteed by the requirement of obtaining nonzero R(∞); otherwise, the

fixed point problem would only has one unique zero solution. The second inequality is by the

fact that ey > y for y > 0.

That is, ϕ(r) first increasing then decreasing as r ranges from 0 to 1. Yet ϕ(0) = 0 and

ϕ(1) < x+ (1− x)− 1 = 0, forcing that ϕ(r) has a unique root r∗ in (0, 1). We remark that the

fixed point r∗ may be derived from the recursive equation

rn+1 = φ(rn), (28)

where r∗ = lim
n→∞

rn. We are now turning to the proof that nonzero R(∞) is a monotonically

decreasing function of x. Assume that there exists 0 < x < x̃ < 1, such that the corresponding

R(∞) < R̃(∞) and argue by contradiction. By substituting x and x̃ into (28), we obtain

r1 = xp1(r0) + (1− x)p2(r0), (29)

r̃1 = x̃p1(r0) + (1− x̃)p2(r0). (30)

Given that p1(r) < p2(r), we have

r1 = x(p1 − p2) + p2 > x̃(p1 − p2) + p2 = r̃1. (31)

Repeating the iteration one more time gives rise to

r2 = xp1(r1) + (1− x)p2(r1), (32)

r̃2 = x̃p1(r̃1) + (1− x̃)p2(r̃1). (33)

Recall that both p1(r) and p2(r) are increasing functions and thus pi(r1) > pi(r̃1), for i = 1, 2. It

follows that

r2 > xp1(r̃1) + (1− x)p2(r̃1) > r̃2. (34)
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By induction, we derive the inequality

lim
n→∞

rn > lim
n→∞

r̃n, (35)

which implies that R(∞) > R̃(∞), a contradiction.

1.2 Bistability condition

To gain further insight into understanding the bistability of equilibrium vaccination level x∗, we

scrutinize Eqs. (17) and (18). These closed-form formulae allow us to perform a thorough

bifurcation analysis based on the bistability condition.

If the vaccine is perfect, there corresponds only one equilibrium vaccination level x∗ for

c ∈ (0, 1). In contrast, multiple equilibria can emerge if vaccine efficacy ε is below a threshold.

To see this, we observe that c(R(∞)) can become non-monotonic (Fig. S2a) asR(∞) increases

from 0 to R(∞)m, where R(∞)m ∈ (0, 1) is the unique root of

exp(−R0R(∞)) +R(∞)− 1 = 0. (36)

We employ here the result above that R(∞) is strictly decreasing with x whence its maximum

value is realized at x = 0 (Fig. S2b). Define y = exp[−R0R(∞)] and immediately we have

c(y) = y1−ε − y. Calculate the first two derivatives of c(y):

dc

dy
= (1− ε)y−ε − 1, (37)

d2c

dy2
= −ε(1− ε)y−(1+ε) < 0. (38)

Observe that y ∈ (exp[−R0R(∞)m], 1). Therefore c(R(∞)) is non-monotonic if and only if

(1− ε) exp[εR0R(∞)m]− 1 > 0, (39)

which further yields

R(∞)m > − 1

εR0
ln(1− ε). (40)

Combined with Eq. (36), we get the lower bound of R0 for this non-monotonicity to occur:

R0 > −
1

ε

ln(1− ε)
1− (1− ε)

1
ε

. (41)
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Figure S2: Graphic plots of (a) c and (b) x∗ as a function of the final epidemic size R(∞).
Parameters: ε = 0.75, R0 = 3.5.
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It is straightforward to show that −1
ε

ln(1−ε)
1−(1−ε)

1
ε

is an increasing function of ε. Hence in particular

R0 > −
1

ε

ln(1− ε)
1− (1− ε)

1
ε

|ε→0=
e

1− e
, (42)

where e ≈ 2.71 is the natural logarithm base.

On the other hand, when c→ 0, R(∞)→ 0. Performing the L’Hospital rule to Eq. (18) gives

rise to

x∗ =
R0 − 1

εR0
. (43)

Given that x∗ ≤ 1 always holds, we obtain an upper bound of R0:

R0 ≤
1

1− ε
. (44)

It remains to establish two threshold values for the relative cost of vaccination, cl and ch,

such that there exists bistability of x∗ on the interval (cl, ch). It is easy to see that cl is the

threshold of c for x∗ = 0, satisfying:

cl = exp[−(1− ε)R0R(∞)m]− exp[−R0R(∞)m], (45)

where R(∞)m is still the largest possible epidemic size with zero vaccination coverage. Mean-

while, ch is the threshold of c above which zero vaccination coverage is the only stable popula-

tion equilibrium (Fig. S2). By maximizing c(y) = y1−ε − y, it turns out that

ch = (1− ε)
1−ε
ε − (1− ε)

1
ε (46)

1.3 Bifurcation analysis

Now we explain these results in more details. For 0 < c < cl there exists a unique stable interior

equilibrium. For cl < c < ch, there exist two interior equilibria, denoted by 0 < x1 < x2 and we

will demonstrate later that x2 is stable while x1 is unstable. The boundary fixed points x = 0 is

stable and x = 1 is unstable. For c > ch, no interior equilibria exist. Still x = 0 is stable and

x = 1 is unstable.

The stability of interior equilibrium xi is determined by the sign of F ′(xi): if F ′(xi) < 0 it is
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Figure S3: Bifurcation and hysteresis with respect to changes in the relative cost of vaccination,
c. Parameters: ε = 0.75, R0 = 3.5.
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stable, otherwise unstable. Using the chain rule, we get

F ′(xi) =
dF

dR(∞)

dR(∞)

dx

∣∣∣∣
x=xi

. (47)

For 0 < c < cl, we have dF
dR(∞) > 0 and dR(∞)

dx < 0. Thus the unique interior equilibrium is

stable. For cl < c < ch, we have when xi = x2, dF
dR(∞) > 0 and dR(∞)

dx < 0 and hence x2 is

stable; when xi = x1, dF
dR(∞) < 0 and dR(∞)

dx < 0, and therefore x1 is unstable (also see Fig. S2).

For c > ch, it is similar to check that the only stable population equilibrium is x = 0 (Fig. S3).
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Figure S4: Bifurcation and hysteresis with respect to changes in the vaccine efficacy, ε. Panel
(b) shows the final epidemic size R(∞) corresponding to the equilibrium vaccination level in
Panel (a). Parameters: c = 0.1, R0 = 3.5.

Bifurcation analysis of equilibrium vaccination levels with respect with changes in the vac-

cine efficacy, ε, for fixed cost of vaccination c, can be performed similarly as given above

(Fig. S4). To do so, we just need to express the equilibrium x∗ as a function of ε as follows.
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ε = 1 +
ln{c+ exp[−R0R(∞)]}

R0R(∞)
, (48)

x∗ =
R(∞) + exp[−R0R(∞)]− 1

exp[−R0R(∞)]− exp[−(1− ε)R0R(∞)]
. (49)

As shown in Fig. S4, the bifurcation diagrams and hysteresis phenomena are almost similar

to these presented in the main text (Figs. 2 & 3), except that there exists an interesting yet

counterintuitive overshooting behavior of vaccination coverage with respect to ε. Equilibrium

vaccination coverage first increases – and even full coverage can be attained under certain

model conditions (Fig. S4) – despite the decrease in vaccine efficacy from 100%. Depending

on the combination of model parametersR0 and c, these two threshold values εl and εh relevant

to the resulting hysteresis loop can be determined accordingly (Fig. S4).

2 Model extensions

2.1 Vaccination dynamics on network populations

In addition to the spatial lattice populations considered in the main text, we simulate vaccina-

tion dynamics in network populations where individuals are connected by random graphs. As

shown in Fig. S5, we confirm that similar hysteresis effect can also arise in random network

populations.

2.2 Impact of co-evolving vaccine attitudes on vaccination dynamics in lattice

populations

As the perceived risk or cost of vaccination is driven by individuals’ attitudes toward vaccination,

we incorporate into our basic model an opinion dynamics that coevolves with the vaccination

uptake decisions. We consider two different opinions: one is vaccine-neutral attitude that con-

cerns the real cost of vaccination, c; the opposite is vaccine-averse attitude that exaggerates

the cost of vaccination by θ > 0, with a perceived cost of vaccination c + θ. Similar simulation

method is used except that individuals will now imitate both the vaccine attitude and the uptake

decision of a randomly chosen neighbor. Our results suggest that, as compared to the basic

model, vaccination coverage is more sensitive to the increase in perceived cost of vaccination

and also more difficult to recover in the presence of co-evolving vaccine altitudes (Fig. S6).
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Figure S5: Hysteresis in random network populations. Shown are the occurrence of hysteresis
loops with respect to changes in (a) the relative cost of vaccination, c, and (b) the effectiveness
of vaccination, ε. The inset plots in (a) and (b) show the details of the corresponding hystere-
sis loops. Panels (c) and (d) are network snapshots of population states, respectively, in the
descending and ascending path of the hysteresis loop in panel (a) for c = 0.25 and ε = 0.75.
Parameters: average network degree d = 4, number of infection seeds I0 = 10, transmission
rate β = 0.51, recovery rate γ = 1/3, (a), (b) N = 1000, (c), (d) N = 500, (a) ε = 0.75, (b)
c = 0.2. Simulation results are averaged over 100 independent runs.
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Figure S6: Coevolution of vaccine attitude and uptake behavior in lattice populations. Shown
are the hysteresis loops with respect to changes in (a) the relative cost of vaccination, c, and
in (b) the effectiveness of vaccination, ε. The directions of the hysteresis loops are indicated
by the arrows. Parameters: lattice size 50 × 50 with the von Neumann neighborhood, equal
initial frequency of each type of individuals, number of infection seeds I0 = 30, transmission
rate β = 0.0375, recovery rate γ = 0.1, θ = 0.1, (a) ε = 0.4, (b) c = 0.01. Results are averaged
over 400 independent runs.
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2.3 Vaccination dynamics in age-structured populations and waning of vaccine

protection

Of particular interest is to study secondary vaccine failure in the context of childhood diseases

(such as mumps and measles). Here, vaccine failure is depicted as waning of initial vaccine

protection over time elapsed since vaccination. As most types of children immunizations are

scheduled more or less within 12 months of birth, we assume that vaccination is given shortly

after birth. For simplicity, we further suppose that a fraction x of each age cohort are vaccinated,

essentially at birth.

To understand the impact of vaccine failures due to declining efficacy of protection, we

incorporate into the basic model an age structure that depicts different mixing contacts and

thus heterogeneous risks of infections for members of each age group. Without loss of gen-

erality, we consider n age classes, and their mixing contacts are described by the matrix

Φ = {φij}n×n. The force of infection for individuals in age class a is βa
∑n

j=1 φajIj . There-

fore, the age-structured epidemiological model is given by:

dSa
dt

= −βaSa

 n∑
j=1

φajIj

 , (50)

dIa
dt

= [βaSa + βa(1− εa)Va]

 n∑
j=1

φajIj

− γaIa, (51)

dVa
dt

= −βa(1− εa)Va

 n∑
j=1

φajIj

 , (52)

dRa
dt

= γaIa, (53)

for age class a = 1, 2, · · · , n, respectively. For notational convenience, we use vectors of age-

specific model parameters to denote transmission rates β̂ = [β1, β2, · · · , βn], recovery rates

γ̂ = [γ1, γ2, · · · , γn], and vaccine efficacies ε̂ = [ε1, ε2, · · · , εn], respectively. The population

proportion of each age class is denoted by α̂ = [α1, α2, · · · , αn]. We have
∑n

i=1 αi = 1. The

parameter εa quantifies the degree of waning of vaccine protection for individuals in age class

a who have received vaccination at birth.

More general cases where a fraction x of each age cohort are vaccinated at age b can be

analyzed analogously; we just need to set the initial conditions Va(0) = 0 for age cohort a < b

and Va(0) = xαa for a ≥ b.
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Specifically, we consider five age classes in our analysis, corresponding to the age intervals

[0 4], [5 9], [10 14], [15 19], and [20 75]. Under equilibrium age distribution, the size of these age

groups is given by [5N0, 5N0, 5N0, 5N0, 55N0], where N0 is the number of newborns. This leads

to α̂ = [1, 1, 1, 1, 11]/15.

For each age class a, the risks of infection for vaccinated vs. unvaccinated can be calculated

as follows.

From Eq. (53), we get
∑n

j=1 φajIj(t) =
∑n

j=1
dRj(t)
dt φaj/γj =

d(
∑n

j=1Rj(t)φaj/γj)

dt . Dividing it

with Eq. (50) separately on both sides, we obtain

dSa
Sa

= −βad(
n∑
j=1

Rj(t)φaj/γj). (54)

Integrating both sides from 0 to∞, we arrive at

Sa(∞)

Sa(0)
= exp

−βa
 n∑
j=1

Rj(∞)φaj/γj)

 . (55)

Similarly, we get

Va(∞)

Va(0)
= exp

−βa(1− εa)
 n∑
j=1

Rj(∞)φaj/γj)

 . (56)

Using the condition Sa(0)+Va(0) = Sa(∞)+Va(∞)+Ra(∞) = αa, we obtain the following set

of transcendental equations for the final epidemic size Ra(∞) in age class a, for a = 1, 2, · · · , n,

which can be solved numerically:

Ra(∞) = αa − αa(1− x) exp

−βa
 n∑
j=1

Rj(∞)φaj/γj)


−αax exp

−βa(1− εa)
 n∑
j=1

Rj(∞)φaj/γj)

 . (57)

The risk of infection, ωa0 , for an unvaccinated individual in age class a can be calculated as

ωa0 = 1− Sa(∞)

Sa(0)
= 1− exp

−βa
 n∑
j=1

Rj(∞)φaj/γj)

 . (58)
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The risk of infection, ωa1 , for a vaccinated individual in age class a can be calculated as

ωa1 = 1− Va(∞)

Va(0)
= 1− exp

−βa(1− εa)
 n∑
j=1

Rj(∞)φaj/γj)

 . (59)

Then the expected payoff of an unvaccinated individual throughout one’s lifetime is

f1(x) = −c+
n∑
a=1

αa[(−1) · ωa1 ]. (60)

Similarly, the expected payoff of an unvaccinated individual is

f0(x) =

n∑
a=1

αa[(−1) · ωa0 ]. (61)

As before, the social imitation dynamics of vaccination is described by the replicator equation:

dx

dt
= x(1− x)[f1(x)− f0(x)].

We perform bifurcation analysis across the space of model parameters, in particular, with re-

spect to changes in the relative cost of vaccination and the waning efficacy of vaccination. As

shown in the main text, we find that hysteresis effect can also arise in age-structured popula-

tions with secondary vaccine failure.
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